3.425 \(\int \frac {x^8}{(8 c-d x^3)^2 \sqrt {c+d x^3}} \, dx\)

Optimal. Leaf size=83 \[ \frac {64 c \sqrt {c+d x^3}}{27 d^3 \left (8 c-d x^3\right )}+\frac {2 \sqrt {c+d x^3}}{3 d^3}-\frac {224 \sqrt {c} \tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{3 \sqrt {c}}\right )}{81 d^3} \]

[Out]

-224/81*arctanh(1/3*(d*x^3+c)^(1/2)/c^(1/2))*c^(1/2)/d^3+2/3*(d*x^3+c)^(1/2)/d^3+64/27*c*(d*x^3+c)^(1/2)/d^3/(
-d*x^3+8*c)

________________________________________________________________________________________

Rubi [A]  time = 0.06, antiderivative size = 83, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.185, Rules used = {446, 89, 80, 63, 206} \[ \frac {64 c \sqrt {c+d x^3}}{27 d^3 \left (8 c-d x^3\right )}+\frac {2 \sqrt {c+d x^3}}{3 d^3}-\frac {224 \sqrt {c} \tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{3 \sqrt {c}}\right )}{81 d^3} \]

Antiderivative was successfully verified.

[In]

Int[x^8/((8*c - d*x^3)^2*Sqrt[c + d*x^3]),x]

[Out]

(2*Sqrt[c + d*x^3])/(3*d^3) + (64*c*Sqrt[c + d*x^3])/(27*d^3*(8*c - d*x^3)) - (224*Sqrt[c]*ArcTanh[Sqrt[c + d*
x^3]/(3*Sqrt[c])])/(81*d^3)

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 80

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(c + d*x)
^(n + 1)*(e + f*x)^(p + 1))/(d*f*(n + p + 2)), x] + Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(
d*f*(n + p + 2)), Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 2,
0]

Rule 89

Int[((a_.) + (b_.)*(x_))^2*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((b*c - a*
d)^2*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(d^2*(d*e - c*f)*(n + 1)), x] - Dist[1/(d^2*(d*e - c*f)*(n + 1)), In
t[(c + d*x)^(n + 1)*(e + f*x)^p*Simp[a^2*d^2*f*(n + p + 2) + b^2*c*(d*e*(n + 1) + c*f*(p + 1)) - 2*a*b*d*(d*e*
(n + 1) + c*f*(p + 1)) - b^2*d*(d*e - c*f)*(n + 1)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && (LtQ
[n, -1] || (EqQ[n + p + 3, 0] && NeQ[n, -1] && (SumSimplerQ[n, 1] ||  !SumSimplerQ[p, 1])))

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps

\begin {align*} \int \frac {x^8}{\left (8 c-d x^3\right )^2 \sqrt {c+d x^3}} \, dx &=\frac {1}{3} \operatorname {Subst}\left (\int \frac {x^2}{(8 c-d x)^2 \sqrt {c+d x}} \, dx,x,x^3\right )\\ &=\frac {64 c \sqrt {c+d x^3}}{27 d^3 \left (8 c-d x^3\right )}-\frac {\operatorname {Subst}\left (\int \frac {40 c^2 d+9 c d^2 x}{(8 c-d x) \sqrt {c+d x}} \, dx,x,x^3\right )}{27 c d^3}\\ &=\frac {2 \sqrt {c+d x^3}}{3 d^3}+\frac {64 c \sqrt {c+d x^3}}{27 d^3 \left (8 c-d x^3\right )}-\frac {(112 c) \operatorname {Subst}\left (\int \frac {1}{(8 c-d x) \sqrt {c+d x}} \, dx,x,x^3\right )}{27 d^2}\\ &=\frac {2 \sqrt {c+d x^3}}{3 d^3}+\frac {64 c \sqrt {c+d x^3}}{27 d^3 \left (8 c-d x^3\right )}-\frac {(224 c) \operatorname {Subst}\left (\int \frac {1}{9 c-x^2} \, dx,x,\sqrt {c+d x^3}\right )}{27 d^3}\\ &=\frac {2 \sqrt {c+d x^3}}{3 d^3}+\frac {64 c \sqrt {c+d x^3}}{27 d^3 \left (8 c-d x^3\right )}-\frac {224 \sqrt {c} \tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{3 \sqrt {c}}\right )}{81 d^3}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 82, normalized size = 0.99 \[ -\frac {64 c \sqrt {c+d x^3}}{27 d^3 \left (d x^3-8 c\right )}+\frac {2 \sqrt {c+d x^3}}{3 d^3}-\frac {224 \sqrt {c} \tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{3 \sqrt {c}}\right )}{81 d^3} \]

Antiderivative was successfully verified.

[In]

Integrate[x^8/((8*c - d*x^3)^2*Sqrt[c + d*x^3]),x]

[Out]

(2*Sqrt[c + d*x^3])/(3*d^3) - (64*c*Sqrt[c + d*x^3])/(27*d^3*(-8*c + d*x^3)) - (224*Sqrt[c]*ArcTanh[Sqrt[c + d
*x^3]/(3*Sqrt[c])])/(81*d^3)

________________________________________________________________________________________

fricas [A]  time = 0.64, size = 167, normalized size = 2.01 \[ \left [\frac {2 \, {\left (56 \, {\left (d x^{3} - 8 \, c\right )} \sqrt {c} \log \left (\frac {d x^{3} - 6 \, \sqrt {d x^{3} + c} \sqrt {c} + 10 \, c}{d x^{3} - 8 \, c}\right ) + 3 \, {\left (9 \, d x^{3} - 104 \, c\right )} \sqrt {d x^{3} + c}\right )}}{81 \, {\left (d^{4} x^{3} - 8 \, c d^{3}\right )}}, \frac {2 \, {\left (112 \, {\left (d x^{3} - 8 \, c\right )} \sqrt {-c} \arctan \left (\frac {\sqrt {d x^{3} + c} \sqrt {-c}}{3 \, c}\right ) + 3 \, {\left (9 \, d x^{3} - 104 \, c\right )} \sqrt {d x^{3} + c}\right )}}{81 \, {\left (d^{4} x^{3} - 8 \, c d^{3}\right )}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^8/(-d*x^3+8*c)^2/(d*x^3+c)^(1/2),x, algorithm="fricas")

[Out]

[2/81*(56*(d*x^3 - 8*c)*sqrt(c)*log((d*x^3 - 6*sqrt(d*x^3 + c)*sqrt(c) + 10*c)/(d*x^3 - 8*c)) + 3*(9*d*x^3 - 1
04*c)*sqrt(d*x^3 + c))/(d^4*x^3 - 8*c*d^3), 2/81*(112*(d*x^3 - 8*c)*sqrt(-c)*arctan(1/3*sqrt(d*x^3 + c)*sqrt(-
c)/c) + 3*(9*d*x^3 - 104*c)*sqrt(d*x^3 + c))/(d^4*x^3 - 8*c*d^3)]

________________________________________________________________________________________

giac [A]  time = 0.17, size = 69, normalized size = 0.83 \[ \frac {224 \, c \arctan \left (\frac {\sqrt {d x^{3} + c}}{3 \, \sqrt {-c}}\right )}{81 \, \sqrt {-c} d^{3}} + \frac {2 \, \sqrt {d x^{3} + c}}{3 \, d^{3}} - \frac {64 \, \sqrt {d x^{3} + c} c}{27 \, {\left (d x^{3} - 8 \, c\right )} d^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^8/(-d*x^3+8*c)^2/(d*x^3+c)^(1/2),x, algorithm="giac")

[Out]

224/81*c*arctan(1/3*sqrt(d*x^3 + c)/sqrt(-c))/(sqrt(-c)*d^3) + 2/3*sqrt(d*x^3 + c)/d^3 - 64/27*sqrt(d*x^3 + c)
*c/((d*x^3 - 8*c)*d^3)

________________________________________________________________________________________

maple [C]  time = 0.20, size = 874, normalized size = 10.53 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^8/(-d*x^3+8*c)^2/(d*x^3+c)^(1/2),x)

[Out]

2/3*(d*x^3+c)^(1/2)/d^3+64*c^2/d^2*(-1/27*(d*x^3+c)^(1/2)/(d*x^3-8*c)/c/d-1/486*I/c^2/d^3*2^(1/2)*sum((-c*d^2)
^(1/3)*(1/2*I*(2*x+(-I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3))/d)/(-c*d^2)^(1/3)*d)^(1/2)*((x-(-c*d^2)^(1/3)/d)
/(-3*(-c*d^2)^(1/3)+I*3^(1/2)*(-c*d^2)^(1/3))*d)^(1/2)*(-1/2*I*(2*x+(I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3))/
d)/(-c*d^2)^(1/3)*d)^(1/2)/(d*x^3+c)^(1/2)*(2*_alpha^2*d^2+I*(-c*d^2)^(1/3)*3^(1/2)*_alpha*d-(-c*d^2)^(1/3)*_a
lpha*d-I*3^(1/2)*(-c*d^2)^(2/3)-(-c*d^2)^(2/3))*EllipticPi(1/3*3^(1/2)*(I*(x+1/2*(-c*d^2)^(1/3)/d-1/2*I*3^(1/2
)*(-c*d^2)^(1/3)/d)*3^(1/2)/(-c*d^2)^(1/3)*d)^(1/2),-1/18*(2*I*(-c*d^2)^(1/3)*3^(1/2)*_alpha^2*d+I*3^(1/2)*c*d
-3*c*d-I*(-c*d^2)^(2/3)*3^(1/2)*_alpha-3*(-c*d^2)^(2/3)*_alpha)/c/d,(I*3^(1/2)*(-c*d^2)^(1/3)/(-3/2*(-c*d^2)^(
1/3)/d+1/2*I*3^(1/2)*(-c*d^2)^(1/3)/d)/d)^(1/2)),_alpha=RootOf(_Z^3*d-8*c)))+16/27*I/d^5*2^(1/2)*sum((-c*d^2)^
(1/3)*(1/2*I*(2*x+(-I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3))/d)/(-c*d^2)^(1/3)*d)^(1/2)*((x-(-c*d^2)^(1/3)/d)/
(-3*(-c*d^2)^(1/3)+I*3^(1/2)*(-c*d^2)^(1/3))*d)^(1/2)*(-1/2*I*(2*x+(I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3))/d
)/(-c*d^2)^(1/3)*d)^(1/2)/(d*x^3+c)^(1/2)*(2*_alpha^2*d^2+I*(-c*d^2)^(1/3)*3^(1/2)*_alpha*d-(-c*d^2)^(1/3)*_al
pha*d-I*3^(1/2)*(-c*d^2)^(2/3)-(-c*d^2)^(2/3))*EllipticPi(1/3*3^(1/2)*(I*(x+1/2*(-c*d^2)^(1/3)/d-1/2*I*3^(1/2)
*(-c*d^2)^(1/3)/d)*3^(1/2)/(-c*d^2)^(1/3)*d)^(1/2),-1/18*(2*I*(-c*d^2)^(1/3)*3^(1/2)*_alpha^2*d+I*3^(1/2)*c*d-
3*c*d-I*(-c*d^2)^(2/3)*3^(1/2)*_alpha-3*(-c*d^2)^(2/3)*_alpha)/c/d,(I*3^(1/2)*(-c*d^2)^(1/3)/(-3/2*(-c*d^2)^(1
/3)/d+1/2*I*3^(1/2)*(-c*d^2)^(1/3)/d)/d)^(1/2)),_alpha=RootOf(_Z^3*d-8*c))

________________________________________________________________________________________

maxima [A]  time = 1.56, size = 79, normalized size = 0.95 \[ \frac {2 \, {\left (56 \, \sqrt {c} \log \left (\frac {\sqrt {d x^{3} + c} - 3 \, \sqrt {c}}{\sqrt {d x^{3} + c} + 3 \, \sqrt {c}}\right ) + 27 \, \sqrt {d x^{3} + c} - \frac {96 \, \sqrt {d x^{3} + c} c}{d x^{3} - 8 \, c}\right )}}{81 \, d^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^8/(-d*x^3+8*c)^2/(d*x^3+c)^(1/2),x, algorithm="maxima")

[Out]

2/81*(56*sqrt(c)*log((sqrt(d*x^3 + c) - 3*sqrt(c))/(sqrt(d*x^3 + c) + 3*sqrt(c))) + 27*sqrt(d*x^3 + c) - 96*sq
rt(d*x^3 + c)*c/(d*x^3 - 8*c))/d^3

________________________________________________________________________________________

mupad [B]  time = 4.00, size = 87, normalized size = 1.05 \[ \frac {2\,\sqrt {d\,x^3+c}}{3\,d^3}+\frac {112\,\sqrt {c}\,\ln \left (\frac {10\,c+d\,x^3-6\,\sqrt {c}\,\sqrt {d\,x^3+c}}{8\,c-d\,x^3}\right )}{81\,d^3}+\frac {64\,c\,\sqrt {d\,x^3+c}}{27\,d^3\,\left (8\,c-d\,x^3\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^8/((c + d*x^3)^(1/2)*(8*c - d*x^3)^2),x)

[Out]

(2*(c + d*x^3)^(1/2))/(3*d^3) + (112*c^(1/2)*log((10*c + d*x^3 - 6*c^(1/2)*(c + d*x^3)^(1/2))/(8*c - d*x^3)))/
(81*d^3) + (64*c*(c + d*x^3)^(1/2))/(27*d^3*(8*c - d*x^3))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{8}}{\left (- 8 c + d x^{3}\right )^{2} \sqrt {c + d x^{3}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**8/(-d*x**3+8*c)**2/(d*x**3+c)**(1/2),x)

[Out]

Integral(x**8/((-8*c + d*x**3)**2*sqrt(c + d*x**3)), x)

________________________________________________________________________________________